LANSLIDES ANALYSIS UNDER STATIC AND SEISMIC CONDITIONS

PEDRO S. SÊCO E PINTO NATIONAL LABORATORY OF CIVIL ENGINEERING (LNEC) UNIVERSITY NEW OF LISBON UNIVERSITY OF COIMBRA PORTUGAL

TOPICS

- INTRODUCTION TO HAZARDS
- TRIGGERED MECHANISMS OF LANDSLIDES
- GEOTECHNICAL CHARACTERIZATION METHODS
- ANALYSIS OF LANDSLIDES STABILITY UNDER STATIC AND SEISMIC CONDITIONS
- MONITORING AND SAFETY EVALUATION
- PREVENTION, MITIGATION AND REHABILITATION METHODS
- RISK ANALYSIS
- CASE STUDY 1: CASTRO DAIRE LANDSLIDE
- CASE STUDY 2: JOSEFINA LANDSLIDE
- FUTURE DEVELOPMENTS
- FINAL COMMENTS

CASUALTIES FOR DIFFERENT NATURAL (source CRED)

CLASSIFICATION OF NATURAL DISASTERS (source CRED)

- Drought
- Earthquake
- Epidemic
- Famine
- Extreme Temperature
- Flood
- Insect infestation
- Slide
- Volcano
- Wave/Surge
- Wild fires
- Wind storm

REGIONAL PERCENTAGE OF GEODISASTERS IN RECENT PERCENTAGE OF GEODISASTERS IN RECENT 15 YEARS (source CRED)

EXTREME EVENTS

The 2004 Indian Ocean Tsunami with more than 240 thousands lives

 Bhola cyclone in November 1970 with winds of 190 km/h in Bay of Bengal with a death toll of 500 000 and 100 000 people missing

- The volcano of Tambora (Indonesia) with a violent eruption killed 92 000 people
- Due 1923 Great Kanto earthquake more than 140 000 people were killed in and around Tokyo
- The 1976 Tangshan earthquake (M7.8) in China claimed 242 000 lives and is a typical extreme event
- The most recent Pakistan earthquake (M7.6) on October
- 8, 2005 killed more than 75000 people

LANSLIDE TRIGGER MECHANISMS (reference AVI Database)

EL SALVADOR SLOPE AFTER EARTHQUAKE 13 January 2001

ALASKA EARTHQUAKE, 1964

Chi-Chi EARTHQUAKE, 1999-Shallow Disaggregated Slides (courtesy Nicholas Sittar)

Chi-Chi EARTHQUAKE, 1999-Shallow Disaggregated Slides (courtesy Nicholas Sittar)

Chi-Chi EARTHQUAKE, 1999-Rock Falls (courtesy Nicholas Sittar)

ROCK FALL, KOBE EARTHQUAKE, 1995 (courtesy Nicholas Sittar)

FLOW SLIDES AND DEBRIS DENALI EARTHQUAKE, 2002

Bedding Parallel to Slope Niigata Perfecture (courtesy R.Keyen, USGS)

Italy-Val Pola 1987 landslide (after GEOTECHNET, 2005)

Switzerland houses and road swept away (after GEOTECHNET, 2005)

Shum Wan road landslip –August 1995–Hong Kong

<u>ZNE<</u>

Landslide in Rissa, Norway (1978)

Landslide in Varna (Romania)

LANSLIDES – THREE MAIN INGREDIENTS (after GEOTECHNET)

LOSS OF LIFE FROM LANDSLIDES

Table 2 - Field tests

Test	Parameters for stress state				Strength Parameters			Parameters for deformation			
	γ	I _d	Ko	OCR	S	Su	С	φ	E	G _{max}	Μ
CPTU	X	X	X	X	X	X	Χ	X	X		Х
SPT		X			X	X	Χ	X	X		X
Vane shear			X	X	X	X	Χ		X		
Pressiometer			X			X	X	X	X		
Penetrometer						X	Χ	X	X		
Dilatometer	X	X		X		X		X	X	X	Х

Table 3 - Laboratory tests

Teet	Strength	neters	Deformation Parameters			
Test	Su	С	¢	E	G _{max}	Μ
Direct shear		X	X			
Uniaxial compaction				X		
Triaxial	Х	X	X	X		
Odometer						Х

Table 4 - Field tests

Tests	Parameters				
	V _p	V _s	G _{max}		
Refraction	X	x	Х		
Uphole	Х	X	Х		
Downhole	X	X	X		
Crosshole	Х	X	Х		

Table 5 – Laboratorytests

Tests	Parameters						
	G	E		G ma x			
Resonant Column	x	x	x	X			
Cyclic Triaxial	X	X	X				
Cyclic simple shear	x	x	x				
Cyclic torsional shear	x	х	x				

Laboratory Devices

Variation of shear modulus and damping ration with shear strain

SLOPE STABILITY

Pseudo-Static Method

Rigid Block Models

Dynamic Analysis

FH = 0,5 α gr γ f SW/g for the horizontal direction

 $FV = \pm 0,5 FH$ in the vertical direction when Spectrum Type 1 is applicable $FV = \pm 0,33 FH$ in the vertical direction when Spectrum Type 2 is applicable

SLOPE STABILITY

Simplified methods shall not be used for soils capable of developing high pore water pressures or significant degradation of stiffness

Topics that deserve more consideration Residual strenght of soil Rock slope stability Mitigation methods

TOPOGRAPHIC AMPLIFICATION

For slopes with height greater than 30 m. The following recommendations are given (i) for slopes angles less than 15° the topography effects can be neglected (ii) for isolated cliffs and slopes a value of $S \ge [1,2]$ should be used (iii) for slopes angles > 30° a value of $S \ge [1,4]$ should be used and $S \ge 1,2$ for smaller slope angles (iv) in the presence of a looser surface layer more than [5] m thick, the smallest value given in (ii) and (iii) shall be used increased by at least [20%]

TOPOGRAPHIC AMPLIFICATION

•Studies conducted by Idriss (1968) on 27 and 45 degrees clay slopes by f.e.m. have shown that the magnitude of peak surface acceleration was greater at the crest surface of the slope than at points lower on the slope, but comparing the peak ground acceleration at the crest to that at some distance behind the crest in

some cases the acceleration at the crest was much greater, in other case cases there was little difference. The natural period of the soil column was responsible for much more amplification of the input motion than the slope geometry.

Paolucci and Rimaldi (2002) have pointed that amplification factors for 2D analyses are of the same range of EC8, but for 3D analyses the values are 25% higher.

•Ashford et al (1997) concluded that topographic effects can be normalized as a function of the ratio of the slope height and wave length of the motion

ANALYSIS OF SLOPES STABILITY DURING EARTHQUAKES

EXPERIMENTAL MODELS SHAKING TABLE CENTRIFUGE TESTS MATHEMATICAL MODELS PSEUDO –STATIC ANALYSES SIMPLIFIED PROCEDURES TO ASSESS DEFORMATIONS DYNAMIC ANALYSIS

∠\\E<

Pedro Sêco Pinto

SLOPE VUE

FOLIATION AND JOINT PLOT

Foliación: N04W/41SW Sistema S1: N35E/45SE Sistema S2: N73W/83SW Sistema S3: N74W/87NE Sistema S4: N13E/78SE

ROCK BOLTS

GENERAL VUE

OBSERVATION PLANS

RISK FACTORS ARE RELATED WITH ENVIRONMENTAL, RELIABILITY AND HUMAN AND ECONOMIC HAZARD NETWORK OF SEISMIC RECORDING STATIONS SHALL BE INSTALLED PRIOR TO RESERVOIR FILLING

SURFACE MOVEMENT MEASURING DEVICES

Application of techniques of trilateration measurement technology has achieved the degree of precision required to assure, with confidence, the safety and integrity of the dams

VERTICAL INTERNAL MEASURING DEVICES

Magnetic probe Pneumatic settlement sensor

HORIZONTAL INTERNAL MEASURING DEVICES

Inclinometers

Extensometers

PORE PRESSURE MEASURING DEVICES

Vibrating - wire piezometer Hydraulic twin-tube piezometers Hydraulic Piezometers Pneumatic piezometers

ZNEK

SEISMIC INSTRUMENTATION

SEISMIC INSTRUMENTATION TO ASSESS SEISMICITY AROUND THE RESERVOIR AND THE RESPONSE OF THE DAM STRONG –MOTION ACCELEROGRAPHS, PEAK RECORDING ACCELEROGRAPHS AND SEISMOSCOPES

DATA ACQUISITION

AUTOMATIC SYSTEM ALLOWS A RAPID DATA PROCESSING AND REDUCTION OF PERSONAL AUTOMATIC SYSTEM IMPLIES AN INCREASE OF COMPLEXITY AND CAN BE DESTROYED BY AN EARTHQUAKE

DATA MANAGEMENT

COLECTION OF DATA FOR SOME INTERVALS CHECK OF DATA TO ASSESS THE RELIABILITY DATA STORAGE MANAGEMENT OF ANOMALIES POSSIBILITY OF COMMUNICATION REMOTE UNITS

DATA VALIDATION

COMPARISON OF THE READINGS WITH ESTABLISED LIMITS **USE OF STATISTICAL, DETERMINISTIC OR HYBRID** MODELS **USE OF BACK ANALYSIS METHODS FOR THE INTERPRETATION OF THE BEHAVIOR OF SLOPES**

SAFETY CONTROL

REGULAR MEASUREMENTS USING INSTRUMENTATION DATA VALIDATION DATA STORAGE SAFETY EVALUATION CORRECTIVE ACTIONS

VISUAL INSPECTIONS

INSPECTIONS BEFORE THE FIRST FILLING INSPECTIONS AFTER THE FIRST FILLING INSPECTIONS AFTER EXCEPTIONAL OCCURRENCES DURING INSPECTIONS THE FOLLOWING ASPECTS DESERVE ATTENTION: DAM BODY, SPILLWAY, OUTLET WORKS, RESERVOIR AND ACCESS ROAD

MITIGATION METHODS

Two mitigation methods namely anchors and soft layers were applied to study the case of Aegion slope. The following conclusions were obtained (Stamatopoulos, 2005): (i) With the use of anchors the whole body connected with anchors will move with less total and differential acceleration. There is a need to optimise the anchors inclination and length.

(ii) The use of soft barrier will allow a decrease of acceleration and consequently a reduction of displacement.

MITIGATION METHODS

MITIGATION METHODS Rock Barriers

MITIGATION METHODS Barriers

BARRIERS

BLOCK FALL

LANDSCAPE TREATMENT Planting

LANDSCAPE TREATMENT

CONSTRUCTION TO LIMIT DEBRIS FLOW

SUITABLE RULES

APPROACHES FOR MITIGATION SLOPE MOVEMENTS AND THEIR CONSEQUENCES

	Eliminates the problem or reduces the consequences	Decreases driving forces	Increases resisting forces
Intervention on:			
Material, controlling laws and parameters			
 Removal of unstable material	•		•
Soil treatment with lime, cement or other additives Thermal treatment Etc.			•
Predisposition factors			
 Nailing, piling, anchoring, bolting — Earthworks for decreasing driving forces	· · · · · · · · · · · · · · · · · · ·		•
Trigerring or aggraving factors			
 Surface drainage		•	• • • • • • • • • • • • • • • • • • •
Movement consequences			
 Protection against falling or sliding materials (catch nets	•		

RISK ANALYSES

TO IDENTIFY REAL RISKS ASSOCIATED WITH TYPE AND HEIGHT OF SLOPE THREE QUESTIONS: WHAT CAN GO WRONG? HOW LIKELY IS IT? WHAT DAMAGE WILL IT DO? RISK ANALYSIS TO GUIDE FUTURE INVESTIGATIONS TO MAKE DECISIONS ON DAM SAFETY DISCUSSIONS RELATED FAILURE MODES AND EFFECTS ANALYSIS(FMEA), FAILURE MODE, EFFECTS AND CRITICALLY ANALYSIS (FMECA), EVENT TRESS ANALYSIS (ETA), FAULT TREE ANALYSIS (FTA

RISK ANALYSES after Lacasse and Nadim)

Note: $P_2 > P_1$ although $F_2 > F_1$, i.e. a higher factor of safety does not necessarily correspond to a lower probability of failure, depending on the degree of uncertainty involved.

RISK MANEGEMENT FRAMEWORK(AGS, 2000)

HAZARD REDUCTION – COST OF INTERVENTION ANALYSIS

HAZARD REDUCTION – COST OF INTERVENTION ANALYSIS

POSSIBLE AVENUES FOR WARNING SYSTEMS

	Pre-failure stage	Failure	Post-failure stage	Reactivation
Type of Stage of movement		 	 1	
Material	1 1	 	1 	,
Controlling laws and parameters		1 		t 1 1
Predisposition factors		¶ 		
Triggering or aggravating factors		j	 	
Revealing factors		I	ļ	
Movement consequences	i	I I		

CASTRO DAIRE LANDSLIDE

PLAN AND GEOTECHNICAL PROFILE

REPRESENTATION OF DISCONTINUITIES

SEISMIC PROFILE

SLOPE EXCAVATION

SLOPE VUE

22+000

SLOPE VUE BEFORE DRAINAGE

22+025 (antes de executar dreno e colector)
SLOPE FAILURE

2ª queda ao km 22+175 - 22/10/2001

2ª queda ao km 22+175 - 22/10/2001

BIENIAWSKY RATINGS FOR RMR (1979)

PARAMETER	RANGES							
UCS	> 250 MPa	100-250 MPa	50-100 MPa	25-50 MPa	5-25 MPa	1-5 MPa	< 1 Mpa	
rating	15	12	7	4	2	1	0	
RQD	90-100%	75-90%	50-75%	25-50%		< 25%		
rating	20	17	13	8		3		
spacing of	> 2	0.6-2	0.2-0.6	0.06-0.2 m		< 0.06 m		
discontinuities	m	m	m					
rating	20	15	10	8		5		
Condition of	very rough	slightly rough	slightly	Slikensided		soft gouge		
discontinuities	not	separation <	rough	or gouge <		> 5mm or		
	continuous	1mm slightly	separation <	5mm or		separation		
	no	weadered	1mm highly	separation 1-		> 5mm		
	separation		weathered	5mm		continuou		
	unweadered			continuous		S		
rating	30	25	20	10		0		
Groundwater in joints	Dry	Damp	Wet	Dripping		Flowing		
rating	15	10	7	4		0		

ADJUSTMENT RATING FOR JOINTS

	CASE	ANGLE	Very favoura ble	Favoura ble	Fair	Unfavou rable	Very unfavo urable
	Р	α j - αS	> 30°	30° - 20°	20° - 10°	10° - 5°	< 5°
	Т	α <mark>j</mark> - αs - 180°					
	P/T	F1	0.15	0.40	0.70	0.85	1.00
	Р	βj	< 20°	20° - 30°	30° - 35°	35° - 45°	> 45°
	Р	F2	0.15	0.40	0.70	0.85	1.00
P Plane failure	T	F2	1	1	1	1	1
T Toppling failure	Р	β j - β s	> 10°	10 - 0 °	0°	0°- (-10°)	< -10 °
	Т	β j + βs	< 110°	110° - 120°	> 120°		
	P/T	F3	0	- 6	- 25	- 50	- 60

ADJUSTEMENT RATING FOR METHODS OF EXCAVATION OF SLOPES

METHOD	Natural slope	Prespliting	Smooth blasting	Blasting or mechnical	Defficient blasting
F4	+15	+ 10	+ 8	0	- 8

TENTATIVE DESCRIPTION OF SMR CLASSES

CLASS	V	IV	III	II	I
SMR	0 - 20	21 - 40	41 - 60	61 - 80	81 - 100
Descript ion	Very bad	Bad	Normal	Good	Very good
Stability	Completly unstable	Unstable	Partially stable	Stable	Comple tly stable
Failures	Big planar or soil-like	Planar or big wedges	Some joints or many wedges	Some blocks	None
Support	Reexcavation	Important/ corrective	Sistematic	Occasionnal	None

SMR CLASSIFICATION

$SMR = RMR - (F1 \times F2 \times F3) + F4$

SMR CLASSIFICATION					
RMR RATING	DESCRIPTION				
2	POOR				
3	POOR				
8	POOR				
0	FAIR				
7	FAIR				
20	POOR ROCK				
SMR RATING	DESCRIPTION				
0.15	FAVOURABLE				
0.85	UNFAVOURABLE				
-50	UNFAVOURABLE				
+9	PRESPLITING + SMOOTH BLASTING				
	CLASSIFICATION RMR RATING 2 3 8 0 7 20 SMR RATING 0.15 0.85 -50 +9				

SMR 32.3 - Bad slope, unstable, planar or big wedges failures, important corrections

RELATIVE RELIEF VALUES AND THEIR CLASSES

Relative relief	Susceptibility	Parameter S _r
0 - 75 m/Km²	very low	0
76 - 175	low	1
176 - 300	moderate	2
301 - 500	medium	3
501 - 800	high	4
> 800	very high	5

CLASSIFICATION OF LITHOLOGIC INFLUENCE

Lithology	Susceptibility	Value S ₁
Permeable limestone, slightly fissured intrusions, basalts, etc., low degree of weathering, low water table, clean rough fractures, high shear strength rocks.	low	1
High degree of weathering of above mentioned lithologies and hard massive clastic sedimentary rocks; low shear strength sherable fractures.	moderate	2
Considerably weathered sedimentary intrusive metamorphic volcanic rocks, compacted regolithic soils, etc.	medium	3
Considerably weathered hydrotermaly altered rocks of any kind, strongly fractured and fissured clay filled poorly compacted pyroclastic and fluvio- lacustrine soils, shallow water tables.	high	4
Extremely altered rocks, low shear resistance alluvial colluvila and residual soils, shallow water tables -	very high	5

CLASSES OF AVERAGE MONTHLY PRECIPITATION

Average monthly precipitation (mm/month)	Assigned value
< 125	0
125 - 250	1
> 250	2

Summation of Precipitation averages	Susceptibility	Value S _h
0 - 4	very low	1
5 - 9	low	2
10 - 14	medium	3
15 - 19	high	4
20 - 24	very high	5

INFLUENCE OF SEISMIC INTENSITY

Intensities (MM) Ts = 100 years	Susceptibility	Value T _s
III	Slight	1
IV	Very low	2
V	Low	3
VI	Moderate	4
VII	Medium	5
VIII	Considerable	6
IX	Important	7
X	Strong	8
XI	Very strong	9
XII	Extremely strong	10

INFLUENCE OF RAINFALL PRECIPITATION

Maximum rainfall	Rainfall	Susceptibility	Value T _p
n>10 years; Tp=100 years	n<10 years; average		
< 100mm	< 50mm	Very low	1
101 - 200	51 - 90	Low	2
201 - 300	91 - 130	Medium	3
301-400	131 - 175	High	4
> 400	> 175	Very high	5

Value from equation (2)	Class	Susceptibility of hazard
0 - 6		Negligible
7 - 32	II	Low
33 - 162	III	Moderate
163 - 512	IV	Medium
513 -1250	V	High
> 1250	VI	Very high

Proposed maximum LHEF rating for different contributory for LHZ mapping

Contributory Factor	Maximum LHEF Rating
Lithology	2
Relationship of structural discontinuities with slopes	2
Slope morphometry	2
Relative relief	1
Landuse and Landcover	2
Groundwater condition	1
Total	10

Proposed maximum LHEF rating

Zone	TEHD Value	Description of Zones
l	< 3.5	Very low hazard (VLH) Zone
I	3.5 – 5.0	Low hazard (LH) Zone
- 111	5.1 – 6.0	Moderate hazard (MH) Zone
IV	6.1 – 7.5	High hazard (HH) Zone
V	> 7.5	Very High hazard (VHH) Zone

